Walking on Data Words

Amaldev Manuel, Anca Muscholl, Gabriele Puppis LaBRI / CNRS

CSR 2013

Origins and applications of data languages

- **Databases**: to model specifications and queries on XML documents that contain both symbols from a finite alphabet and <u>data values</u> from a potentially infinite alphabet
- Verification: to model properties of programs parametrized by variables ranging over an infinite domain
- Formal languages: to understand how the classical theory of regular languages over finite alphabets can be extended to languages over infinite alphabets.

What precisely is a data language?

A data language is a set of finite words over an infinite alphabet $\Sigma \times D$ of pairs of letters and data values.

To make life easier, one usually enforces the following restriction:

Languages are invariant under permuations of data values (e.g. $\binom{a}{1}\binom{b}{2}\binom{a}{2}\binom{b}{1}\binom{a}{3} \in L$ iff $\binom{a}{5}\binom{b}{3}\binom{a}{3}\binom{b}{5}\binom{a}{7} \in L$)

if focus on properties concerning equalities of data values

What precisely is a data language?

A data language is a set of finite words over an infinite alphabet $\Sigma \times D$ of pairs of letters and data values.

To make life easier, one usually enforces the following restriction:

Languages are invariant under permuations of data values (e.g. $\binom{a}{1}\binom{b}{2}\binom{a}{2}\binom{b}{1}\binom{a}{3} \in L$ iff $\binom{a}{5}\binom{b}{3}\binom{a}{3}\binom{b}{5}\binom{a}{7} \in L$)

properties concerning equalities of data values

An example of data language

$$L = \{ w \in D^* \mid w \text{ contains at least 2 distinct values} \}$$

$$= \left\{ \bigcirc \bigcirc, \bigcirc \bigcirc \bigcirc \bigcirc, \bigcirc \bigcirc \bigcirc \bigcirc, \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc, \ldots \right\}$$

What precisely is a data language?

A data language is a set of finite words over an infinite alphabet $\Sigma \times D$ of pairs of letters and data values.

To make life easier, one usually enforces the following restriction:

Languages are invariant under permuations of data values (e.g. $\binom{a}{1}\binom{b}{2}\binom{a}{2}\binom{b}{1}\binom{a}{3} \in L$ iff $\binom{a}{5}\binom{b}{3}\binom{a}{3}\binom{b}{5}\binom{a}{7} \in L$)

properties concerning equalities of data values

An example of data language

 $L = \{ w \in D^* \mid w \text{ contains at least 2 distinct values} \}$

Like in the classical case, automata on data words can be:

- deterministic / non-deterministic / alternating
- one-way / two-way

Like in the classical case, automata on data words can be:

- deterministic / non-deterministic / alternating
- one-way / two-way

...moreover, to handle data values, one can equip automata with:

Like in the classical case, automata on data words can be:

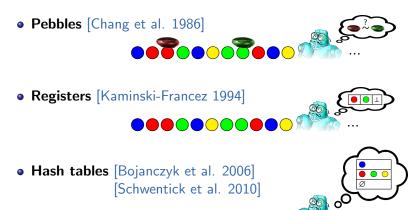
- deterministic / non-deterministic / alternating
- one-way / two-way

...moreover, to handle data values, one can equip automata with:

Like in the classical case, automata on data words can be:

- deterministic / non-deterministic / alternating
- one-way / two-way

...moreover, to handle data values, one can equip automata with:



Unlike classical automata:

- Ø different models have often different expressive power
- Ø difficult to get equivalence between automata and logics
- there is a tradeoff between expressiveness of models, robustness of class of recognized languages, and decidability of paradigmatic problems

Unlike classical automata:

- Gifferent models have often different expressive power
- difficult to get equivalence between automata and logics
- there is a tradeoff between expressiveness of models, robustness of class of recognized languages, and **decidability** of paradigmatic problems

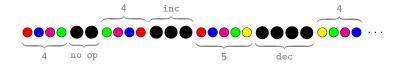
Examples for automata with registers

- One-way deterministic \Rightarrow
- One-way non-deterministic
- One-way alternating \Rightarrow
- Two-way deterministic

- quite weak (no reversals)
- no complementation \Rightarrow
- emptiness undecidable
- emptiness undecidable \Rightarrow

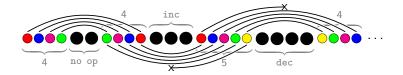
A word on undecidability of emptiness...

... it often arises from the possibility of encoding counter machines:



Mord on undecidability of emptiness...

... it often arises from the possibility of encoding counter machines:



In some sense, data words are problematic because they can be seen as graphs with potentially unbounded grid minors.

In this talk:

Data Walking Automata

Closures and other properties

Decision problems

We think of a data word as a special graph:

• vertices are positions in the word:

$\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$

• 4 types of edges:

We think of a data word as a special graph:

• vertices are positions in the word:

• 4 types of edges: global successor

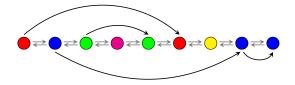
We think of a data word as a special graph:

• vertices are positions in the word:

• 4 types of edges: global successor global predecessor

We think of a data word as a special graph:

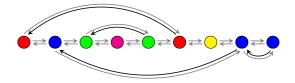
• vertices are positions in the word:



• 4 types of edges: global successor class successor global predecessor

We think of a data word as a special graph:

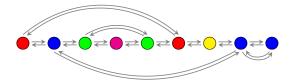
• vertices are positions in the word:



• 4 types of edges: global successor class successor global predecessor class predecessor

We think of a data word as a special graph:

• vertices are positions in the word:



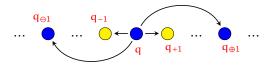
 4 types of edges: global successor class successor global predecessor class predecessor

Vertices are implicitly labeled with **local types** specifying whether successors/precedessors exist and whether they coincide.

2 natural notions of automata on data words seen as graphs:

Tiling Automata [Thomas 1997]
a.k.a. Data Automata [Bojanczyk et al. 2006]
or Class Memory Automata [Schwentick et al. 2010]

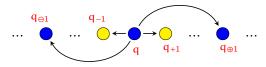
runs = labelings satisfying constraints on neighborhoods



2 natural notions of automata on data words seen as graphs:

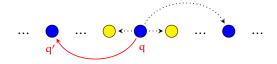
Tiling Automata [Thomas 1997]
a.k.a. Data Automata [Bojanczyk et al. 2006]
or Class Memory Automata [Schwentick et al. 2010]

runs = labelings satisfying constraints on neighborhoods



Walking Automata [Aho, Ullman 1971]

runs = deterministic / non-deterministic traversals



Example 1

 $L = \{ words where all a are followed by b in the same class \}$

• A **Tiling Automaton** marks the longest b-suffix in each class:

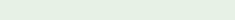
uses states p, q, avoids tiles $(\mathbf{Q}_{q}, \dots, \mathbf{Q}_{q})$

Example 1

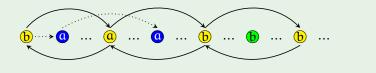
 $L = \{ words where all a are followed by b in the same class \}$

• A Tiling Automaton marks the longest b-suffix in each class:

uses states p, q, avoids tiles \mathbf{Q}_{q} \mathbf{O}_{q} ... \mathbf{O}_{p}



• A Walking Automaton scans each class verifying $\{a, b\}^* \{b\}^+$:



Example 2

 $L = \{ words where all a are followed by b in a <u>different</u> class \}$

To accept a data word, e.g.

a Data Walking Automata should perform the following steps:

Example 2

 $L = \{ words where all a are followed by b in a <u>different</u> class \}$

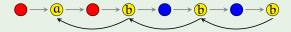
To accept a data word, e.g.

a Data Walking Automata should perform the following steps:

go to last position and check it is b

Example 2

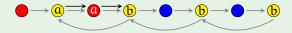
 $L = \{ words where all a are followed by b in a <u>different</u> class \}$



- a Data Walking Automata should perform the following steps:
 - go to last position and check it is b
 - \bigcirc go to the last α in the same class (accept if there is none)

Example 2

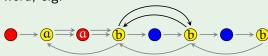
 $L = \{ words where all a are followed by b in a <u>different</u> class \}$



- a Data Walking Automata should perform the following steps:
 - go to last position and check it is b
 - 2 go to the last a in the same class (accept if there is none)
 - I move to next b using global successor

Example 2

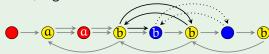
 $L = \{ words where all a are followed by b in a <u>different</u> class \}$



- a Data Walking Automata should perform the following steps:
 - go to last position and check it is b
 - 2 go to the last a in the same class (accept if there is none)
 - Image move to next b using global successor
 - If class successor is b...

Example 2

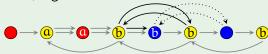
 $L = \{ words where all a are followed by b in a <u>different</u> class \}$



- a Data Walking Automata should perform the following steps:
 - go to last position and check it is b
 - 2 go to the last a in the same class (accept if there is none)
 - In the second state of the second state of
 - If class successor is b... then repeat step

Example 2

 $L = \{ words where all a are followed by b in a <u>different</u> class \}$



- a Data Walking Automata should perform the following steps:
 - go to last position and check it is b
 - 2 go to the last a in the same class (accept if there is none)
 - Image move to next b using global successor
 - If class successor is b... then repeat step
 - accept iff reached position is not the last.

Proposition

Non-deterministic Data Walking Automata are effectively closed under **union** and **intersection**.

Deterministic Data Walking Automata are effectively closed under **union**, **intersection**, and **complementation**.

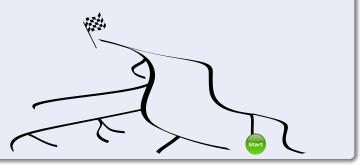
Proposition

Non-deterministic Data Walking Automata are effectively closed under **union** and **intersection**.

Deterministic Data Walking Automata are effectively closed under **union**, **intersection**, and **complementation**.

Proof idea (deterministic case)

Use Sipser's technique to avoid infinite loops:



Proposition

Non-deterministic Data Walking Automata are effectively closed under **union** and **intersection**.

Deterministic Data Walking Automata are effectively closed under **union**, **intersection**, and **complementation**.

Proof idea (deterministic case)

Use Sipser's technique to avoid infinite loops:

Theorem				
Deterministic		Non-deterministic		Tiling
Data Walking	⊊	Data Walking	⊈	Automata
Automata		Automata		on data words

Theorem				
Deterministic		Non-deterministic		Tiling
Data Walking	⊊	Data Walking	⊈	Automata
Automata		Automata		on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008] for Tree Walking Automata, by **encoding trees** with data words:

- root = first position
- child 1 = class successor
- child 2 = global successor (only if class successor is defined!)

Closures and other properties

Theorem				
Deterministic		Non-deterministic		Tiling
Data Walking	⊊	Data Walking	⊈	Automata
Automata		Automata		on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008] for Tree Walking Automata, by **encoding trees** with data words:

- root = first position
- child 1 = class successor
- child 2 = global successor (only if class successor is defined!)
- a Deterministic Data Walking Automaton can check whether a data word is a valid tree encoding.

Closures and other properties

Theorem				
Deterministic		Non-deterministic	⊆	Tiling
Data Walking	⊊	Data Walking	⊈	Automata
Automata		Automata		on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008] for Tree Walking Automata, by **encoding trees** with data words:

- root = first position
- child 1 = class successor
- child 2 = global successor (only if class successor is defined!)
- a Deterministic Data Walking Automaton can check whether a data word is a valid tree encoding.

A Deterministic Data Walking Automaton can recognize the language of all correct tilings on data words and hence the set of all runs of a Tiling Automaton A Deterministic Data Walking Automaton can recognize the language of all correct tilings on data words and hence the set of all runs of a Tiling Automaton

Corollary

Tiling Automata recognize **projections** of languages recognized by Deterministic Data Walking Automata.

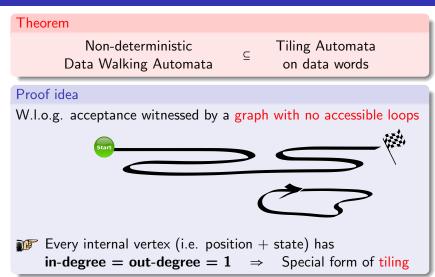
Corollary

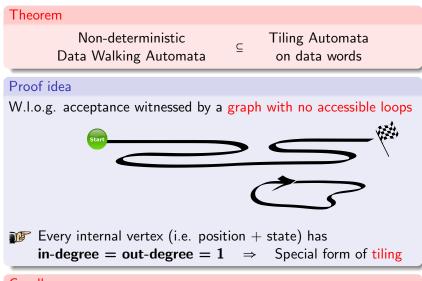
Emptiness of Deterministic Data Walking Automata is as hard as emptiness of Tiling Automata and **Petri Nets reachability**.

Theorem

Non-deterministic Data Walking Automata Tiling Automata on data words

⊆





Corollary

Emptiness is decidable for Non-det. Data Walking Automata.

Theorem

Complements of Non-det. Data Walking Automata Tiling Automata on data words

⊆

Theorem

Complements of Non-det. Data Walking Automata Tiling Automata on data words

⊆

Proof idea

Consider any set of vertices (positions + state) that

- contains the initial configuration
- **2** is closed under all possible transitions.
- The automaton rejects the input data word iff the final configuration is not in the above set
- The above set is a special form of tiling

Theorem

Complements of Non-det. Data Walking Automata Tiling Automata on data words

⊆

Proof idea

Consider any set of vertices (positions + state) that

- Ontains the initial configuration
- **2** is closed under all possible transitions.
- The automaton rejects the input data word iff the final configuration is not in the above set
- IF The above set is a special form of tiling

Corollary

Universality is decidable for Non-det. Data Walking Automata.

IF Tiling Automata are closed under unions and intersections.

Corollary

Containment and, more generally, any boolean combination of Non-deterministic Data Walking Automata is decidable.

The general picture

