
Walking on Data Words

Amaldev Manuel, Anca Muscholl, Gabriele Puppis
LaBRI / CNRS

CSR 2013

Introduction

Origins and applications of data languages

Databases: to model specifications and queries on
XML documents that contain both symbols from a
finite alphabet and data values from a potentially
infinite alphabet

Verification: to model properties of programs
parametrized by variables ranging over an infinite domain

Formal languages: to understand how the classical
theory of regular languages over finite alphabets can
be extended to languages over infinite alphabets.

Introduction

What precisely is a data language?

A data language is a set of finite words over an
infinite alphabet Σ ×D of pairs of letters and data values.

To make life easier, one usually enforces the following restriction:

Languages are invariant under permuations of data values

(e.g. (a1)(
b
2)(

a
2)(

b
1)(

a
3) ∈ L iff (a5)(

b
3)(

a
3)(

b
5)(

a
7) ∈ L)

focus on properties concerning equalities of data values

An example of data language

L = { w ∈D∗ ∣ w contains at least 2 distinct values }

= { # #, # # # #, # # # #, # # # # # # #, . . . }

Introduction

What precisely is a data language?

A data language is a set of finite words over an
infinite alphabet Σ ×D of pairs of letters and data values.

To make life easier, one usually enforces the following restriction:

Languages are invariant under permuations of data values

(e.g. (a1)(
b
2)(

a
2)(

b
1)(

a
3) ∈ L iff (a5)(

b
3)(

a
3)(

b
5)(

a
7) ∈ L)

focus on properties concerning equalities of data values

An example of data language

L = { w ∈D∗ ∣ w contains at least 2 distinct values }

= { # #, # # # #, # # # #, # # # # # # #, . . . }

Introduction

What precisely is a data language?

A data language is a set of finite words over an
infinite alphabet Σ ×D of pairs of letters and data values.

To make life easier, one usually enforces the following restriction:

Languages are invariant under permuations of data values

(e.g. (a1)(
b
2)(

a
2)(

b
1)(

a
3) ∈ L iff (a5)(

b
3)(

a
3)(

b
5)(

a
7) ∈ L)

focus on properties concerning equalities of data values

An example of data language

L = { w ∈D∗ ∣ w contains at least 2 distinct values }

= { # #, # # # #, # # # #, # # # # # # #, . . . }

Introduction

Like in the classical case, automata on data words can be:

deterministic / non-deterministic / alternating

one-way / two-way

...moreover, to handle data values, one can equip automata with:

Pebbles [Chang et al. 1986]

 # # # # # # # # # # #

?
∼

⋯

Registers [Kaminski-Francez 1994]

a # # # # # # # # # # #

 # # �

⋯

Hash tables [Bojanczyk et al. 2006]
[Schwentick et al. 2010]

 # # # # # # # # # # #

 #
 # # #
∅

⋯

Introduction

Like in the classical case, automata on data words can be:

deterministic / non-deterministic / alternating

one-way / two-way

...moreover, to handle data values, one can equip automata with:

Pebbles [Chang et al. 1986]

 # # # # # # # # # # #

?
∼

⋯

Registers [Kaminski-Francez 1994]

a # # # # # # # # # # #

 # # �

⋯

Hash tables [Bojanczyk et al. 2006]
[Schwentick et al. 2010]

 # # # # # # # # # # #

 #
 # # #
∅

⋯

Introduction

Like in the classical case, automata on data words can be:

deterministic / non-deterministic / alternating

one-way / two-way

...moreover, to handle data values, one can equip automata with:

Pebbles [Chang et al. 1986]

 # # # # # # # # # # #

?
∼

⋯

Registers [Kaminski-Francez 1994]

a # # # # # # # # # # #

 # # �

⋯

Hash tables [Bojanczyk et al. 2006]
[Schwentick et al. 2010]

 # # # # # # # # # # #

 #
 # # #
∅

⋯

Introduction

Like in the classical case, automata on data words can be:

deterministic / non-deterministic / alternating

one-way / two-way

...moreover, to handle data values, one can equip automata with:

Pebbles [Chang et al. 1986]

 # # # # # # # # # # #

?
∼

⋯

Registers [Kaminski-Francez 1994]

a # # # # # # # # # # #

 # # �

⋯

Hash tables [Bojanczyk et al. 2006]
[Schwentick et al. 2010]

 # # # # # # # # # # #

 #
 # # #
∅

⋯

Introduction

Unlike classical automata:

different models have often different expressive power

difficult to get equivalence between automata and logics

there is a tradeoff between
expressiveness of models,
robustness of class of recognized languages, and
decidability of paradigmatic problems

Examples for automata with registers

One-way deterministic ⇒ quite weak (no reversals)

One-way non-deterministic ⇒ no complementation

One-way alternating ⇒ emptiness undecidable

Two-way deterministic ⇒ emptiness undecidable

Introduction

Unlike classical automata:

different models have often different expressive power

difficult to get equivalence between automata and logics

there is a tradeoff between
expressiveness of models,
robustness of class of recognized languages, and
decidability of paradigmatic problems

Examples for automata with registers

One-way deterministic ⇒ quite weak (no reversals)

One-way non-deterministic ⇒ no complementation

One-way alternating ⇒ emptiness undecidable

Two-way deterministic ⇒ emptiness undecidable

Introduction

A word on undecidability of emptiness...

...it often arises from the possibility of encoding counter machines:

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
4

 # # # # # #
±
no op

4
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
 # # # #

inc
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
 # # #

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
5

 # # # # # # # # #
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dec

4
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
 # # # # . . .

In some sense, data words are problematic because they can
be seen as graphs with potentially unbounded grid minors.

Introduction

A word on undecidability of emptiness...

...it often arises from the possibility of encoding counter machines:

´¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¶
4

 # # # # # #
±
no op

4
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
 # # # #

inc
³¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
 # # #

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
5

 # # # # # # # # #
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

dec

4
³¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹µ
 # # # # . . .

x

x

In some sense, data words are problematic because they can
be seen as graphs with potentially unbounded grid minors.

Outline

In this talk:

Data Walking Automata

Closures and other properties

Decision problems

Data Walking Automata

We think of a data word as a special graph:

vertices are positions in the word:

 # # # # # # # # #

4 types of edges:

global successor class successor

global predecessor class predecessor

Vertices are implicitly labeled with local types specifying
whether successors/precedessors exist and whether they coincide.

Data Walking Automata

We think of a data word as a special graph:

vertices are positions in the word:

 # # # # # # # # #

4 types of edges: global successor

class successor

global predecessor class predecessor

Vertices are implicitly labeled with local types specifying
whether successors/precedessors exist and whether they coincide.

Data Walking Automata

We think of a data word as a special graph:

vertices are positions in the word:

 # # # # # # # # #

4 types of edges: global successor

class successor

global predecessor

class predecessor

Vertices are implicitly labeled with local types specifying
whether successors/precedessors exist and whether they coincide.

Data Walking Automata

We think of a data word as a special graph:

vertices are positions in the word:

 # # # # # # # # #

4 types of edges: global successor class successor

global predecessor

class predecessor

Vertices are implicitly labeled with local types specifying
whether successors/precedessors exist and whether they coincide.

Data Walking Automata

We think of a data word as a special graph:

vertices are positions in the word:

 # # # # # # # # #

4 types of edges: global successor class successor

global predecessor class predecessor

Vertices are implicitly labeled with local types specifying
whether successors/precedessors exist and whether they coincide.

Data Walking Automata

We think of a data word as a special graph:

vertices are positions in the word:

 # # # # # # # # #

4 types of edges: global successor class successor

global predecessor class predecessor

Vertices are implicitly labeled with local types specifying
whether successors/precedessors exist and whether they coincide.

Data Walking Automata

2 natural notions of automata on data words seen as graphs:

1 Tiling Automata [Thomas 1997]
a.k.a. Data Automata [Bojanczyk et al. 2006]

or Class Memory Automata [Schwentick et al. 2010]

runs = labelings satisfying constraints on neighborhoods

⋯ # ⋯ # # # ⋯ # ⋯

q⊖1 q−1

q q+1 q⊕1

2 Walking Automata [Aho, Ullman 1971]

runs = deterministic / non-deterministic traversals

⋯ # ⋯ # # # ⋯ # ⋯
qq′

Data Walking Automata

2 natural notions of automata on data words seen as graphs:

1 Tiling Automata [Thomas 1997]
a.k.a. Data Automata [Bojanczyk et al. 2006]

or Class Memory Automata [Schwentick et al. 2010]

runs = labelings satisfying constraints on neighborhoods

⋯ # ⋯ # # # ⋯ # ⋯

q⊖1 q−1

q q+1 q⊕1

2 Walking Automata [Aho, Ullman 1971]

runs = deterministic / non-deterministic traversals

⋯ # ⋯ # # # ⋯ # ⋯
qq′

Data Walking Automata

Example 1

L = {words where all a are followed by b in the same class}

A Tiling Automaton marks the longest b-suffix in each class:

uses states p,q, avoids tiles # # ⋯ # #
x

a
q q p p

A Walking Automaton scans each class verifying {a,b}∗{b}+:

 # # ⋯ # ⋯ # ⋯ # ⋯ # ⋯ # ⋯b a b ba a b

Data Walking Automata

Example 1

L = {words where all a are followed by b in the same class}

A Tiling Automaton marks the longest b-suffix in each class:

uses states p,q, avoids tiles # # ⋯ # #
x

a
q q p p

A Walking Automaton scans each class verifying {a,b}∗{b}+:

 # # ⋯ # ⋯ # ⋯ # ⋯ # ⋯ # ⋯b a b ba a b

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

2 go to the last a in the same class (accept if there is none)

3 move to next b using global successor

4 if class successor is b...

then repeat step 3

5 accept iff reached position is not the last.

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

b

2 go to the last a in the same class (accept if there is none)

3 move to next b using global successor

4 if class successor is b...

then repeat step 3

5 accept iff reached position is not the last.

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

b

2 go to the last a in the same class (accept if there is none)

bba

3 move to next b using global successor

4 if class successor is b...

then repeat step 3

5 accept iff reached position is not the last.

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

b

2 go to the last a in the same class (accept if there is none)

bba

3 move to next b using global successor

a

4 if class successor is b...

then repeat step 3

5 accept iff reached position is not the last.

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

b

2 go to the last a in the same class (accept if there is none)

bba

3 move to next b using global successor

a

4 if class successor is b...

then repeat step 3

5 accept iff reached position is not the last.

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

b

2 go to the last a in the same class (accept if there is none)

bba

3 move to next b using global successor

a

4 if class successor is b... then repeat step 3

b

5 accept iff reached position is not the last.

Data Walking Automata

Example 2

L = {words where all a are followed by b in a different class}

To accept a data word, e.g.

 # # # # # # # #

a Data Walking Automata should perform the following steps:

1 go to last position and check it is b

b

2 go to the last a in the same class (accept if there is none)

bba

3 move to next b using global successor

a

4 if class successor is b... then repeat step 3

b

5 accept iff reached position is not the last.

Closures and other properties

Proposition

Non-deterministic Data Walking Automata are
effectively closed under union and intersection.

Deterministic Data Walking Automata are effectively
closed under union, intersection, and complementation.

Proof idea (deterministic case)

Use Sipser’s technique to avoid infinite loops:

Closures and other properties

Proposition

Non-deterministic Data Walking Automata are
effectively closed under union and intersection.

Deterministic Data Walking Automata are effectively
closed under union, intersection, and complementation.

Proof idea (deterministic case)

Use Sipser’s technique to avoid infinite loops:

Closures and other properties

Proposition

Non-deterministic Data Walking Automata are
effectively closed under union and intersection.

Deterministic Data Walking Automata are effectively
closed under union, intersection, and complementation.

Proof idea (deterministic case)

Use Sipser’s technique to avoid infinite loops:

Closures and other properties

Theorem

Deterministic Non-deterministic

⊆

Tiling
Data Walking ⊊ Data Walking ⊈ Automata

Automata Automata on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008]
for Tree Walking Automata, by encoding trees with data words:

 # # # # # # #

root = first position
child 1 = class successor
child 2 = global successor (only if class successor is defined!)

a Deterministic Data Walking Automaton can
check whether a data word is a valid tree encoding.

Closures and other properties

Theorem

Deterministic Non-deterministic

⊆

Tiling
Data Walking ⊊ Data Walking ⊈ Automata

Automata Automata on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008]
for Tree Walking Automata, by encoding trees with data words:

 # # # # # # #

root = first position
child 1 = class successor
child 2 = global successor (only if class successor is defined!)

a Deterministic Data Walking Automaton can
check whether a data word is a valid tree encoding.

Closures and other properties

Theorem

Deterministic Non-deterministic

⊆

Tiling
Data Walking ⊊ Data Walking ⊈ Automata

Automata Automata on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008]
for Tree Walking Automata, by encoding trees with data words:

 # # # # # # #

root = first position
child 1 = class successor
child 2 = global successor (only if class successor is defined!)

a Deterministic Data Walking Automaton can
check whether a data word is a valid tree encoding.

Closures and other properties

Theorem

Deterministic Non-deterministic ⊆ Tiling
Data Walking ⊊ Data Walking ⊈ Automata

Automata Automata on data words

Proof idea of separations

Reduce to analogous results [Colcombet and Bojanczyk 2006,2008]
for Tree Walking Automata, by encoding trees with data words:

 # # # # # # #

root = first position
child 1 = class successor
child 2 = global successor (only if class successor is defined!)

a Deterministic Data Walking Automaton can
check whether a data word is a valid tree encoding.

Decision problems

A Deterministic Data Walking Automaton can recognize
the language of all correct tilings on data words
and hence the set of all runs of a Tiling Automaton

Corollary

Tiling Automata recognize projections of languages
recognized by Deterministic Data Walking Automata.

Corollary

Emptiness of Deterministic Data Walking Automata is as hard
as emptiness of Tiling Automata and Petri Nets reachability.

Decision problems

A Deterministic Data Walking Automaton can recognize
the language of all correct tilings on data words
and hence the set of all runs of a Tiling Automaton

Corollary

Tiling Automata recognize projections of languages
recognized by Deterministic Data Walking Automata.

Corollary

Emptiness of Deterministic Data Walking Automata is as hard
as emptiness of Tiling Automata and Petri Nets reachability.

Decision problems

Theorem

Non-deterministic
Data Walking Automata

⊆
Tiling Automata

on data words

Proof idea

W.l.o.g. acceptance witnessed by a graph with no accessible loops

Every internal vertex (i.e. position + state) has
in-degree = out-degree = 1 ⇒ Special form of tiling

Corollary

Emptiness is decidable for Non-det. Data Walking Automata.

Decision problems

Theorem

Non-deterministic
Data Walking Automata

⊆
Tiling Automata

on data words

Proof idea

W.l.o.g. acceptance witnessed by a graph with no accessible loops

Every internal vertex (i.e. position + state) has
in-degree = out-degree = 1 ⇒ Special form of tiling

Corollary

Emptiness is decidable for Non-det. Data Walking Automata.

Decision problems

Theorem

Non-deterministic
Data Walking Automata

⊆
Tiling Automata

on data words

Proof idea

W.l.o.g. acceptance witnessed by a graph with no accessible loops

Every internal vertex (i.e. position + state) has
in-degree = out-degree = 1 ⇒ Special form of tiling

Corollary

Emptiness is decidable for Non-det. Data Walking Automata.

Decision problems

Theorem

Complements of Non-det.
Data Walking Automata

⊆
Tiling Automata

on data words

Proof idea

Consider any set of vertices (positions + state) that

1 contains the initial configuration

2 is closed under all possible transitions.

The automaton rejects the input data word iff
the final configuration is not in the above set

The above set is a special form of tiling

Corollary

Universality is decidable for Non-det. Data Walking Automata.

Decision problems

Theorem

Complements of Non-det.
Data Walking Automata

⊆
Tiling Automata

on data words

Proof idea

Consider any set of vertices (positions + state) that

1 contains the initial configuration

2 is closed under all possible transitions.

The automaton rejects the input data word iff
the final configuration is not in the above set

The above set is a special form of tiling

Corollary

Universality is decidable for Non-det. Data Walking Automata.

Decision problems

Theorem

Complements of Non-det.
Data Walking Automata

⊆
Tiling Automata

on data words

Proof idea

Consider any set of vertices (positions + state) that

1 contains the initial configuration

2 is closed under all possible transitions.

The automaton rejects the input data word iff
the final configuration is not in the above set

The above set is a special form of tiling

Corollary

Universality is decidable for Non-det. Data Walking Automata.

Decision problems

Tiling Automata are closed under unions and intersections.

Corollary

Containment and, more generally, any boolean combination
of Non-deterministic Data Walking Automata is decidable.

The general picture

d
et

er
ministic

WalkingAutom
ata

no
n-

deterministic WalkingAutom
ata

TilingAutom
ata

non-deterministic
Register Automata

"all data values
 are different"

separations via
tree encodings

 "invalid runs of
counter machines"

